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1. Introduction 

Gallium arsenide (GaAs) is one type of 
semiconductor material compounds and it has 
a zinc blende crystal structure. The material 
Gallium and the material Arsenide are known 
as group III and V materials in the periodic 
table of semiconductor engineering. The two 
materials of gallium and arsenide have the 
same quantities of the element gallium (Ga) 
and element arsenic (As), respectively. The 
structure of gallium arsenide semiconductor 
material is the result of two equivalent 
interpenetrating face-centered cubic (FCC) 
lattices of gallium and arsenide [1]. Fig. 1 
shows the crystal structure of GaAs. 

Gallium arsenide semiconductor material 
can be doped to form both n- and p- type 
materials. Tellurium, selenium, sulfur, which 
are group-VI elements, are donors to gallium 
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arsenide. Group II elements, for example 
cadmium, magnesium, zinc, and are known to 
be acceptors with respect to GaAs material. In 
gallium arsenide compound, group IV 
elements such as silicon and carbon are 
known to be amphoteric dopants [3]. 

 

 
Fig. 1 Crystal structure of GaAs semiconductor 

material [2] 
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 This research work is focused on material science and semiconductor 
engineering. It emphasized on the semiconductor material such as 
Gallium arsenide (GaAs). The Gallium arsenide semiconductor 
material was used as a group III-V compound for metal-oxide 
semiconductor field effect transistor (MOSFET) modeling.  The band-
gap energy structures were analyzed by using material parameters 
such as Varshni parameters, temperature and doping 
concentrations. Then, an electrical characteristic was carried out 
depending on the current and voltage relationship. The current 
flowing in the device is associated with a gate voltage applied to the 
device. From this paper, the analysis of MOSFET modeling was 
investigated using mathematical equations and MATLAB simulation. 
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Although silicon is known to be a gallium 
site when the doping concentration level is 
below 1019 cm-3, the silicon is like a donor. As 
there are two dissimilar atoms in the 
compound, impurity atoms such as in group 
II, group IV and group VI can act as low 
donors and acceptors. Moreover, doping can 
create GaAs semi-insulating [4].  

One of the great advantages of gallium 
arsenide semiconductor material compound is 
that the material has semi-insulating 
properties in some device fabrication 
technologies. These properties make it a low 
capacitance substrate; hence, the device can 
increase its speed [1]. It can also simplify the 
device isolation, which could be accomplished 
in some cases. Actually, semi-insulating 
gallium arsenide could result in a resistivity as 
high as 108 Qcm. Otherwise, the value of 
resistivity of semi-insulating GaAs is about 
107Ωcm in practical usages. Therefore, there 
are different techniques of doping and altering 
the properties of GaAs [5], [6] 

MOSFETs (metal-oxide-semiconductor field 
effect transistors) are offered in enhancement 
and depletion modes of operation. Moreover, 
the enhancement and depletion types of 
MOSFETs are categorized into p-channel and 
n-channel types of transistor as shown in Fig. 
2. The n-channel transistor has n-channel 
region between source and drain. The gate 
and source terminals are heavily doped with 
n-type semiconductor materials [7]. 

 

 
Fig. 2 P-Channel and N-Channel MOSFET [9] 

The substrate region is doped with p-type 
semiconductor material to form p-doped 
GaAs. The drain current of the device flows 
between source and drain electrode and this 
current occurs because of electron flows. The 
current flowing through the device is 
controlled by the gate voltage [8]. 

2. Properties of Gallium Arsenide (GaAs) 
Material 

GaAs is a semiconductor material, which 
has a zinc blende lattice structure. The lattice 
structure of this compound is very comparable 
to the lattice structure of diamond. However, 
the zinc blende structure differs from the 
diamond as there are two unique types of 
atoms in the lattice. In the GaAs, Ga atoms 
are occupied as four atoms and the rests are 
occupied as As-atoms. The important 
characteristics and properties of both 
structures are that atoms of both structures 
are linked together to form a tetrahedron [4]. 
The knowledge on different kinds of crystal 
structures is very important in determining 
the distances between neighboring atoms in a 
crystal. Also, the values of lattice constant are 
essential to control some of the important 
properties (physical and electrical) of crystals 
in a semiconductor [10].  Note that, the 
distance between two neighboring atoms in a 
lattice may be less than the lattice constant 
depending on the crystal structure. Table 1 
shows the properties of the gallium arsenide 
material [4]. 

The gallium arsenide material also has a 
covalent bonding with some ionic character. 
GaAs is utilized in the fabrication 
(manufacture) of several devices like solar 
cells, laser diodes, infrared light-emitting 
diodes, optical windows and monolithic 
microwave integrated circuits. GaAs can also 
be utilized as a substrate material at the 
semiconductor laboratory in performing the 
epitaxial growth of compounds such as InGaAs 
and AlGaAs [10], [11]. Besides, GaAs has a 
wide and direct band gap of 1.42eV. On the 
other hand, silicon has an indirect band gap of 
1.1eV. So, GaAs is a very valuable material for 
switches, high speed operating as well as 
optoelectronic devices [12]. The value of the 
energy gap for GaAs at room temperature is 
1.42 eV, but it is assumed to be 1.53 eV at     
0 K [13]. Fig. 3 shows the band structure of 
gallium arsenide. 

Table 1 Properties of GaAs material [4] 

Type Crystal 
Structure 

Lattice 
Constant at 
300K (Å) 

Dielectric 
constant 

Group III-V 
Compound 

Zinc 
blende 

5.6533 13.1 
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Fig. 3 Band structure of GaAs [1] 

3. Temperature Dependence of Band-Gap 
Energy 

The band-gap energy was examined by the 
temperature dependence parameters. The 
energy level expressed in terms of 
temperature ranges for the material was 
surveyed by Varshni in 1967. The following 
formula expresses the energy band-gap 
depending on the temperature and Varshni’s 
parameters of the material [5]: 

 
βT

αT
0KEE

2

gg


    (1) 

where Eg is energy band gap of the material, T 
is temperature value (K), and 𝛼 and β are 
fitting (otherwise called Varshni) parameters.  

The band gap energy as a function of 
temperature for several semiconductor 
materials is along with the values for fitting 
parameters. Assume that the change in band-
gap energy is the dominant factor in defining 
the voltage of the device depending on the 
temperature values. The temperature reliance 
of the forward voltage follows directly from the 
temperature dependence of the band gap 
energy. Table 2 shows the Varshni parameter 
values for gallium arsenide.  

Table 2 Parameters for Materials [14] 

Materials Eg  (0K) α (10-4 
eV/K) 

β (K) 

Si 1.170 4.73 636 
Ge 0.744 4.77 235 

GaAs 1.519 5.41 204 

 

4. Implementation Procedure for Energy 
Band Diagram 

For the research of energy band, donor 
concentration (Nd) is considered as 2x1017  
cm-3. The conduction band edges (EcN-FN) is 
required to consider at room temperature 
(T=300 K). The value of charge, q is 1.6 x      
10-19 C. The implementation for the energy 
band result is in the following step by step 
procedure. 
The Boltzmann’s constant is:  

eV/K108.6175k 5

B

     

The electron effective mass and that of holes 
for GaAs are: 

0e 0.0665mm 
 

0h 0.50mm 
 

The dielectric constant for GaAs is: 

0n 13.1εε    

The vacuum permittivity is: 

 VcmAs/108.854ε 14

0

  

The band-gap energy, Egn for gallium arsenide 
semiconductor is: 

1.424eVEgn   

The concentration of the conduction band is 
considered as: 

3
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The semiconductor band edges are: 
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The contact potential is as follows: 

   

q
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V
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0


  (5) 

Where Egn is energy band-gap of n-type (eV), 
ΔEv is band edge discontinuities (eV), Fp is 
Fermi level of p-type (eV), Evp is valence band 
edge of p-type material (eV), EcN is conduction 
band level of N-doped material (eV), FN is 
Fermi level of N-doped portion (eV) and q is 
electric charge (C).  

The depletion region width for 
semiconductor is: 

A

1/2

d

N

p

AAd

0n
n N

N
ε

ε
NNqN

V2ε
x
































      (6) 

Where NA is acceptor concentration (cm-3), 
Nd is donor concentration (cm-3), εp is 
dielectric constant for p-type and εN is 
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dielectric constant of N-doped material with 
wider band-gap than n-doped material. 

5. Simulation Results 

The section of simulation results includes 
three portions: current-voltage characteristic 
of the device, temperature dependence of 
energy using Varshni formula and band 
diagram for donor concentration of 2x1017  
cm-3. Fig. 4 illustrates the current-voltage 
characteristics of the device. It can be noted 
that the current condition consists of three 
portions. They are active region, saturated 
region and cut-off region. The gate voltages 
are 4V, 6V and 8V, as observed in Fig. 4.  

 

Fig. 4 I-V characteristics of a MOSFET 

Fig. 5 shows the temperature variation of 
band-gap energy for gallium arsenide, silicon 
and germanium. Among the three types of 
materials, gallium arsenide has the highest 
energy level depending on temperature. 

 

Fig. 5 Band-gap energy GaAs, Si and Ge 

expressed in terms of temperature  

Fig. 6 shows an energy band structure to 
design the MOSFET. The resultant figure is 
simulated by using mathematical equations 
and MATLAB programming language. As can 
be observed from Fig. 6, the green and the 

blue lines are for conduction and valence 
bands of energy diagram, respectively. To 
complete the transistor modeling, the band 
structure is considered as metal-
semiconductor-metal junctions of the device. 
 

 
Fig. 6 Band diagram for specific donor 

concentration, Nd = 2 x 1017 cm-3 

6. Conclusion 

In this paper, the band diagram results are 
seen to be investigated carefully. Also, the 
current condition flowing through the device 
was analyzed by using software simulation 
method. It was found that the resultant 
characteristics produce the properties for 
MOSFET development. Further discussion has 
been found that other parameters for MOSFET 
modeling can be tested again. 
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